Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metabolic excretion associated with nutrient-growth dysregulation promotes the rapid evolution of an overt metabolic defect.

Identifieur interne : 000087 ( Main/Exploration ); précédent : 000086; suivant : 000088

Metabolic excretion associated with nutrient-growth dysregulation promotes the rapid evolution of an overt metabolic defect.

Auteurs : Robin Green [États-Unis] ; Sonal [États-Unis] ; Lin Wang [États-Unis] ; Samuel F M. Hart [États-Unis] ; Wenyun Lu [États-Unis] ; David Skelding [États-Unis] ; Justin C. Burton [États-Unis] ; Hanbing Mi [États-Unis] ; Aric Capel [États-Unis] ; Hung Alex Chen [États-Unis] ; Aaron Lin [États-Unis] ; Arvind R. Subramaniam [États-Unis] ; Joshua D. Rabinowitz [États-Unis] ; Wenying Shou [États-Unis]

Source :

RBID : pubmed:32833957

Descripteurs français

English descriptors

Abstract

In eukaryotes, conserved mechanisms ensure that cell growth is coordinated with nutrient availability. Overactive growth during nutrient limitation ("nutrient-growth dysregulation") can lead to rapid cell death. Here, we demonstrate that cells can adapt to nutrient-growth dysregulation by evolving major metabolic defects. Specifically, when yeast lysine-auxotrophic mutant lys- encountered lysine limitation, an evolutionarily novel stress, cells suffered nutrient-growth dysregulation. A subpopulation repeatedly evolved to lose the ability to synthesize organosulfurs (lys-orgS-). Organosulfurs, mainly reduced glutathione (GSH) and GSH conjugates, were released by lys- cells during lysine limitation when growth was dysregulated, but not during glucose limitation when growth was regulated. Limiting organosulfurs conferred a frequency-dependent fitness advantage to lys-orgS- by eliciting a proper slow growth program, including autophagy. Thus, nutrient-growth dysregulation is associated with rapid organosulfur release, which enables the selection of organosulfur auxotrophy to better tune cell growth to the metabolic environment. We speculate that evolutionarily novel stresses can trigger atypical release of certain metabolites, setting the stage for the evolution of new ecological interactions.

DOI: 10.1371/journal.pbio.3000757
PubMed: 32833957
PubMed Central: PMC7470746


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metabolic excretion associated with nutrient-growth dysregulation promotes the rapid evolution of an overt metabolic defect.</title>
<author>
<name sortKey="Green, Robin" sort="Green, Robin" uniqKey="Green R" first="Robin" last="Green">Robin Green</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sonal" sort="Sonal" uniqKey="Sonal" last="Sonal">Sonal</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Lin" sort="Wang, Lin" uniqKey="Wang L" first="Lin" last="Wang">Lin Wang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hart, Samuel F M" sort="Hart, Samuel F M" uniqKey="Hart S" first="Samuel F M" last="Hart">Samuel F M. Hart</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Wenyun" sort="Lu, Wenyun" uniqKey="Lu W" first="Wenyun" last="Lu">Wenyun Lu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Skelding, David" sort="Skelding, David" uniqKey="Skelding D" first="David" last="Skelding">David Skelding</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Burton, Justin C" sort="Burton, Justin C" uniqKey="Burton J" first="Justin C" last="Burton">Justin C. Burton</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mi, Hanbing" sort="Mi, Hanbing" uniqKey="Mi H" first="Hanbing" last="Mi">Hanbing Mi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Capel, Aric" sort="Capel, Aric" uniqKey="Capel A" first="Aric" last="Capel">Aric Capel</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Hung Alex" sort="Chen, Hung Alex" uniqKey="Chen H" first="Hung Alex" last="Chen">Hung Alex Chen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lin, Aaron" sort="Lin, Aaron" uniqKey="Lin A" first="Aaron" last="Lin">Aaron Lin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Subramaniam, Arvind R" sort="Subramaniam, Arvind R" uniqKey="Subramaniam A" first="Arvind R" last="Subramaniam">Arvind R. Subramaniam</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rabinowitz, Joshua D" sort="Rabinowitz, Joshua D" uniqKey="Rabinowitz J" first="Joshua D" last="Rabinowitz">Joshua D. Rabinowitz</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Shou, Wenying" sort="Shou, Wenying" uniqKey="Shou W" first="Wenying" last="Shou">Wenying Shou</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32833957</idno>
<idno type="pmid">32833957</idno>
<idno type="doi">10.1371/journal.pbio.3000757</idno>
<idno type="pmc">PMC7470746</idno>
<idno type="wicri:Area/Main/Corpus">000028</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000028</idno>
<idno type="wicri:Area/Main/Curation">000028</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000028</idno>
<idno type="wicri:Area/Main/Exploration">000028</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Metabolic excretion associated with nutrient-growth dysregulation promotes the rapid evolution of an overt metabolic defect.</title>
<author>
<name sortKey="Green, Robin" sort="Green, Robin" uniqKey="Green R" first="Robin" last="Green">Robin Green</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sonal" sort="Sonal" uniqKey="Sonal" last="Sonal">Sonal</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Lin" sort="Wang, Lin" uniqKey="Wang L" first="Lin" last="Wang">Lin Wang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hart, Samuel F M" sort="Hart, Samuel F M" uniqKey="Hart S" first="Samuel F M" last="Hart">Samuel F M. Hart</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Wenyun" sort="Lu, Wenyun" uniqKey="Lu W" first="Wenyun" last="Lu">Wenyun Lu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Skelding, David" sort="Skelding, David" uniqKey="Skelding D" first="David" last="Skelding">David Skelding</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Burton, Justin C" sort="Burton, Justin C" uniqKey="Burton J" first="Justin C" last="Burton">Justin C. Burton</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mi, Hanbing" sort="Mi, Hanbing" uniqKey="Mi H" first="Hanbing" last="Mi">Hanbing Mi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Capel, Aric" sort="Capel, Aric" uniqKey="Capel A" first="Aric" last="Capel">Aric Capel</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Hung Alex" sort="Chen, Hung Alex" uniqKey="Chen H" first="Hung Alex" last="Chen">Hung Alex Chen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lin, Aaron" sort="Lin, Aaron" uniqKey="Lin A" first="Aaron" last="Lin">Aaron Lin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Subramaniam, Arvind R" sort="Subramaniam, Arvind R" uniqKey="Subramaniam A" first="Arvind R" last="Subramaniam">Arvind R. Subramaniam</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rabinowitz, Joshua D" sort="Rabinowitz, Joshua D" uniqKey="Rabinowitz J" first="Joshua D" last="Rabinowitz">Joshua D. Rabinowitz</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Shou, Wenying" sort="Shou, Wenying" uniqKey="Shou W" first="Wenying" last="Shou">Wenying Shou</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS biology</title>
<idno type="eISSN">1545-7885</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (genetics)</term>
<term>Autophagy (drug effects)</term>
<term>Autophagy (genetics)</term>
<term>Biological Evolution (MeSH)</term>
<term>Glucose (metabolism)</term>
<term>Glucose (pharmacology)</term>
<term>Lysine (deficiency)</term>
<term>Lysine (pharmacology)</term>
<term>Metabolic Networks and Pathways (drug effects)</term>
<term>Metabolic Networks and Pathways (genetics)</term>
<term>Nitrogen (metabolism)</term>
<term>Nitrogen (pharmacology)</term>
<term>Nutrients (metabolism)</term>
<term>Nutrients (pharmacology)</term>
<term>Ribosomes (drug effects)</term>
<term>Ribosomes (metabolism)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Sirolimus (pharmacology)</term>
<term>Stress, Physiological (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (génétique)</term>
<term>Autophagie (effets des médicaments et des substances chimiques)</term>
<term>Autophagie (génétique)</term>
<term>Azote (métabolisme)</term>
<term>Azote (pharmacologie)</term>
<term>Glucose (métabolisme)</term>
<term>Glucose (pharmacologie)</term>
<term>Lysine (déficit)</term>
<term>Lysine (pharmacologie)</term>
<term>Nutriments (métabolisme)</term>
<term>Nutriments (pharmacologie)</term>
<term>Ribosomes (effets des médicaments et des substances chimiques)</term>
<term>Ribosomes (métabolisme)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Stress physiologique (MeSH)</term>
<term>Voies et réseaux métaboliques (effets des médicaments et des substances chimiques)</term>
<term>Voies et réseaux métaboliques (génétique)</term>
<term>Évolution biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Lysine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glucose</term>
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Autophagy</term>
<term>Metabolic Networks and Pathways</term>
<term>Ribosomes</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Lysine</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Autophagie</term>
<term>Ribosomes</term>
<term>Saccharomyces cerevisiae</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Autophagy</term>
<term>Metabolic Networks and Pathways</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Autophagie</term>
<term>Saccharomyces cerevisiae</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Nutrients</term>
<term>Ribosomes</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Glucose</term>
<term>Nutriments</term>
<term>Ribosomes</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Azote</term>
<term>Glucose</term>
<term>Lysine</term>
<term>Nutriments</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Glucose</term>
<term>Lysine</term>
<term>Nitrogen</term>
<term>Nutrients</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Evolution</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Stress physiologique</term>
<term>Évolution biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In eukaryotes, conserved mechanisms ensure that cell growth is coordinated with nutrient availability. Overactive growth during nutrient limitation ("nutrient-growth dysregulation") can lead to rapid cell death. Here, we demonstrate that cells can adapt to nutrient-growth dysregulation by evolving major metabolic defects. Specifically, when yeast lysine-auxotrophic mutant lys- encountered lysine limitation, an evolutionarily novel stress, cells suffered nutrient-growth dysregulation. A subpopulation repeatedly evolved to lose the ability to synthesize organosulfurs (lys-orgS-). Organosulfurs, mainly reduced glutathione (GSH) and GSH conjugates, were released by lys- cells during lysine limitation when growth was dysregulated, but not during glucose limitation when growth was regulated. Limiting organosulfurs conferred a frequency-dependent fitness advantage to lys-orgS- by eliciting a proper slow growth program, including autophagy. Thus, nutrient-growth dysregulation is associated with rapid organosulfur release, which enables the selection of organosulfur auxotrophy to better tune cell growth to the metabolic environment. We speculate that evolutionarily novel stresses can trigger atypical release of certain metabolites, setting the stage for the evolution of new ecological interactions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32833957</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1545-7885</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2020</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>PLoS biology</Title>
<ISOAbbreviation>PLoS Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Metabolic excretion associated with nutrient-growth dysregulation promotes the rapid evolution of an overt metabolic defect.</ArticleTitle>
<Pagination>
<MedlinePgn>e3000757</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pbio.3000757</ELocationID>
<Abstract>
<AbstractText>In eukaryotes, conserved mechanisms ensure that cell growth is coordinated with nutrient availability. Overactive growth during nutrient limitation ("nutrient-growth dysregulation") can lead to rapid cell death. Here, we demonstrate that cells can adapt to nutrient-growth dysregulation by evolving major metabolic defects. Specifically, when yeast lysine-auxotrophic mutant lys- encountered lysine limitation, an evolutionarily novel stress, cells suffered nutrient-growth dysregulation. A subpopulation repeatedly evolved to lose the ability to synthesize organosulfurs (lys-orgS-). Organosulfurs, mainly reduced glutathione (GSH) and GSH conjugates, were released by lys- cells during lysine limitation when growth was dysregulated, but not during glucose limitation when growth was regulated. Limiting organosulfurs conferred a frequency-dependent fitness advantage to lys-orgS- by eliciting a proper slow growth program, including autophagy. Thus, nutrient-growth dysregulation is associated with rapid organosulfur release, which enables the selection of organosulfur auxotrophy to better tune cell growth to the metabolic environment. We speculate that evolutionarily novel stresses can trigger atypical release of certain metabolites, setting the stage for the evolution of new ecological interactions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Green</LastName>
<ForeName>Robin</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">0000-0001-7411-0593</Identifier>
<AffiliationInfo>
<Affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sonal</LastName>
<Identifier Source="ORCID">0000-0002-2361-4131</Identifier>
<AffiliationInfo>
<Affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Lin</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0002-9370-6891</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hart</LastName>
<ForeName>Samuel F M</ForeName>
<Initials>SFM</Initials>
<Identifier Source="ORCID">0000-0002-5068-2199</Identifier>
<AffiliationInfo>
<Affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Wenyun</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Skelding</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Burton</LastName>
<ForeName>Justin C</ForeName>
<Initials>JC</Initials>
<Identifier Source="ORCID">0000-0002-4797-8968</Identifier>
<AffiliationInfo>
<Affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mi</LastName>
<ForeName>Hanbing</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Capel</LastName>
<ForeName>Aric</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0002-2748-379X</Identifier>
<AffiliationInfo>
<Affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Hung Alex</ForeName>
<Initials>HA</Initials>
<Identifier Source="ORCID">0000-0001-5119-6208</Identifier>
<AffiliationInfo>
<Affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Aaron</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0002-6006-0908</Identifier>
<AffiliationInfo>
<Affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Subramaniam</LastName>
<ForeName>Arvind R</ForeName>
<Initials>AR</Initials>
<AffiliationInfo>
<Affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rabinowitz</LastName>
<ForeName>Joshua D</ForeName>
<Initials>JD</Initials>
<Identifier Source="ORCID">0000-0002-1247-4727</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shou</LastName>
<ForeName>Wenying</ForeName>
<Initials>W</Initials>
<Identifier Source="ORCID">0000-0001-5693-381X</Identifier>
<AffiliationInfo>
<Affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM124128</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>DP2 OD006498</GrantID>
<Acronym>OD</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R35 GM119835</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R50 CA211437</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>1917258 </GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Biol</MedlineTA>
<NlmUniqueID>101183755</NlmUniqueID>
<ISSNLinking>1544-9173</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K3Z4F929H6</RegistryNumber>
<NameOfSubstance UI="D008239">Lysine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="N">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008239" MajorTopicYN="N">Lysine</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000078622" MajorTopicYN="N">Nutrients</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012270" MajorTopicYN="N">Ribosomes</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>02</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>09</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32833957</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pbio.3000757</ArticleId>
<ArticleId IdType="pii">PBIOLOGY-D-19-00494</ArticleId>
<ArticleId IdType="pmc">PMC7470746</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem J. 1998 Sep 15;334 ( Pt 3):723-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9729482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10242-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10468593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Aug;8(8):1727-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24781899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1978 Mar;32(1):125-150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28564086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2006 Mar;8(3):371-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16478444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2014 Sep;68(9):2559-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24910088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1992 Oct;119(2):301-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1400575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2002 Aug;2(3):295-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12702279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Protoc. 2017 Sep 1;2017(9):pdb.prot089086</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28864564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Nov;5(11):e1000713</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19893610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1997 Dec;61(4):503-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9409150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2014 Dec;104(6 Pt A):399-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25281774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2009;48(22):4034-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19388016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1999 Nov;27(9-10):985-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10569630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2010 Dec 1;82(23):9818-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21049934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Dec;10(13):1793-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7747518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2012 May 02;3(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22448042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2020 Jul;5(7):943-954</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32313201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 May;76(9):2989-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20208023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2017 Feb;22(2):135-147</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28084665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Aug;19(8):3290-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18508918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 May 20;111(20):E2149-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24778240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 May 13;105(19):6930-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18456835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1996 May;29(6):511-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8662189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2013 Jan;24(2):157-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23135997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2014 Mar;38(2):254-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24483210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Feb 15;25(4):336-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21289062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 1951;16:337-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14942748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2018 Dec 15;29(26):3183-3200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30354837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Quant Biol. 2018 Jun;6(2):129-141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31598380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2008;42:27-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18303986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2006;7(11):R107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17105650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2018 Jun;1422(1):88-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29194650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cells. 2017 Jul 13;6(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28703742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2921-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21551270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 Jun 15;22(12):1997-2009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21525243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2019 Jun 04;8:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31162049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Syst. 2017 Oct 25;5(4):345-357.e6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28964698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Syst. 2017 Aug 23;5(2):95-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28755958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2018 Jun;12(6):1443-1456</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29572468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Dec;12(12):3821-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11739783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Jan;19(1):352-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17959824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Dec 11;11(12):e1005714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26659116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2014;1163:153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24841304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Jan 1;21(1):198-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19889834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 2000 Jun 1;26(9-10):819-825</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10862891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Jan;187(1):299-317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20944018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2016 Nov 4;12(11):e1006364</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27814362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Nov 14;135(4):714-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18976803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):E1089-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21734149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Oct;4(11):e351</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17048990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2012;13(2):1886-918</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22408430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1992 Nov;17(11):463-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1455517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol Rep. 2015 Apr;7(2):204-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25345570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1975 Aug 5;139(2):121-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1101032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1967 Nov 4;216(5114):456-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4964402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2012 Sep 11;11:122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22963408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 May;1830(5):3154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23206830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2018 Feb 7;82(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29436478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Oct 26;4:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26499891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2007 Aug 1;6(15):1837-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17671424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Nov 15;10:2624</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31798560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1877-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17267602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1987 Apr;7(4):1371-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3037314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2017 Feb 15;36(4):397-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28096180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19079-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23091010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 Jun 15;22(12):2054-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21490148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2009;5:245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19225458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Dec 3;528(7580):99-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26632588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 1983 Jun;146(1):151-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6305691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Quant Biol. 2019 Mar;7(1):69-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31598381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Nov;8(11):2243-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24781900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2013 Feb;9(2):119-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23242256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2013 May;38(5):233-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23465396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2014;1151:27-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24838876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jul 18;154(2):403-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23870128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 Sep;15(9):4089-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15240820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2018 Jun;16(6):383-390</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29599459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2019 Feb 22;17(2):e3000135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30794534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol. 2007;6(2):4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17439666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1976 May;73(5):1664-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">775494</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
<li>Washington (État)</li>
</region>
<settlement>
<li>Princeton (New Jersey)</li>
</settlement>
<orgName>
<li>Université de Princeton</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Green, Robin" sort="Green, Robin" uniqKey="Green R" first="Robin" last="Green">Robin Green</name>
</region>
<name sortKey="Burton, Justin C" sort="Burton, Justin C" uniqKey="Burton J" first="Justin C" last="Burton">Justin C. Burton</name>
<name sortKey="Capel, Aric" sort="Capel, Aric" uniqKey="Capel A" first="Aric" last="Capel">Aric Capel</name>
<name sortKey="Chen, Hung Alex" sort="Chen, Hung Alex" uniqKey="Chen H" first="Hung Alex" last="Chen">Hung Alex Chen</name>
<name sortKey="Hart, Samuel F M" sort="Hart, Samuel F M" uniqKey="Hart S" first="Samuel F M" last="Hart">Samuel F M. Hart</name>
<name sortKey="Lin, Aaron" sort="Lin, Aaron" uniqKey="Lin A" first="Aaron" last="Lin">Aaron Lin</name>
<name sortKey="Lu, Wenyun" sort="Lu, Wenyun" uniqKey="Lu W" first="Wenyun" last="Lu">Wenyun Lu</name>
<name sortKey="Mi, Hanbing" sort="Mi, Hanbing" uniqKey="Mi H" first="Hanbing" last="Mi">Hanbing Mi</name>
<name sortKey="Rabinowitz, Joshua D" sort="Rabinowitz, Joshua D" uniqKey="Rabinowitz J" first="Joshua D" last="Rabinowitz">Joshua D. Rabinowitz</name>
<name sortKey="Shou, Wenying" sort="Shou, Wenying" uniqKey="Shou W" first="Wenying" last="Shou">Wenying Shou</name>
<name sortKey="Skelding, David" sort="Skelding, David" uniqKey="Skelding D" first="David" last="Skelding">David Skelding</name>
<name sortKey="Sonal" sort="Sonal" uniqKey="Sonal" last="Sonal">Sonal</name>
<name sortKey="Subramaniam, Arvind R" sort="Subramaniam, Arvind R" uniqKey="Subramaniam A" first="Arvind R" last="Subramaniam">Arvind R. Subramaniam</name>
<name sortKey="Wang, Lin" sort="Wang, Lin" uniqKey="Wang L" first="Lin" last="Wang">Lin Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000087 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000087 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32833957
   |texte=   Metabolic excretion associated with nutrient-growth dysregulation promotes the rapid evolution of an overt metabolic defect.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32833957" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020